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In this paper, the actuator and sensor locations of a structural test item are selected as
a replacement of the disturbance inputs and the performance outputs of a real structure.
The most straightforward approach is to place sensors in the areas of performance
evaluation, and actuators in the areas of disturbance action. However, this solution is rarely
possible due to technical and economical reasons. Therefore, the actuators and sensors need
to be placed in preselected regions, and should duplicate as close as possible the disturbance
action and the performance measurements. In this paper a placement problem with
non-collocated actuators and disturbances, as well as non-collocated performance and
sensor outputs, is solved. The solution is determined by locating sensors (actuators) such
that the Hankel singular value vector of a structure from actuator inputs to sensor outputs
is closely correlated with the Hankel singular value vector of the structure from the
disturbance inputs to performance outputs. It is shown that this approach improves
additionally the cross-coupling between actuators and performance, and between
disturbances and the sensors, thus improving overall closed loop performance. The method
is illustrated with the determination of sensors of a truss structure, where two selected
sensors replaced an original set of 36 sensors.
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1. INTRODUCTION

In this paper, we address the actuator and sensor placement problem as applied to flexible
structures. For flexible structures the question of actuator and sensor location is of specific
importance; their testing or control often requires the implementation of a large number
of sensors and actuators that make the selection too complex or too expensive. It was
shown in reference [1] that for flexible structures the placement algorithm is comparatively
simple. However, it maximizes the controllability and observability of the modes under
current test, rather than those actually excited in the real structure. Consider, for example,
an antenna structure. The antenna as described in reference [2] is subjected to wind
disturbances that act predominantly at the antenna dish. Antenna pointing accuracy is an
ultimate measure of its performance. In structural tests it is difficult and expensive to apply
dynamic forces at the dish to simulate the disturbances, and to measure the pointing
accuracy. Thus, the test should be conducted such that the actuators located at the
allowable sections of the structure will imitate the wind disturbances as closely as possible,
and sensors selected from the candidate locations will detect the antenna motion that is
the most relevant to the pointing accuracy.

A typical actuator and sensor location problem in structural testing can be described
as follows. The test is planned using available information on the structure itself, on
disturbances acting on the structure and on the expected structural performance. The first
information is typically in the form of a structural finite element model. The disturbance
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information includes disturbance location and disturbance spectra. The structure
performance is commonly evaluated through the displacements or accelerations at certain
structural locations. The configuration of the plant in structural testing is represented in
a block diagram as in Figure 1. In this diagram the structure input is composed of two
inputs that are not necessarily collocated: the disturbance input (w) and the actuator input
(u). Similarly, the plant output is divided into two sets: the performance output (z) and
the sensor output (y). The actuators represent the inputs applied during a test. The
disturbance inputs include disturbances, noises (known and unknown) and commands;
generally they are not applied during the test. The sensor signals include structure outputs
recorded during the test. The performance output contains signals that characterize the
system performance, and is not necessarily measured during the test. In general, it is not
possible to duplicate the dynamics environment during testing; not only due to physical
restrictions or limited knowledge of disturbances, but also because the actuators cannot
be located at the disturbance locations, and because sensors cannot be placed at the
locations of performance evaluation. Thus, to obtain the performance of the test item close
to the performance of a structure in the real environment, one uses the available (or
candidate) locations of actuators and sensors and formulates the selection criteria and the
selection mechanisms to imitate the real environment.

The control design problem of a structure can be defined in a manner similar to the
structural testing. Namely, actuators are placed within the allowable locations, and they
are not necessarily collocated with the disturbance locations; sensors are placed at the
sensor allowable locations, generally outside the locations of performance evaluation. In
the control nomenclature, u is the control input, y is the plant output accessible to the
controller, w is the disturbance input and z is the vector of the performance output, see,
for example, Boyd and Barrat [3].

The ‘‘classical’’ actuator and sensor problem statement considers the actuated input,
and/or the sensed output only; see, for example, DeLorenzo [4], Gawronski [5], Gawronski
and Lim [1], Lim [6], Lim and Gawronski [7], Maghami and Joshi [8], Salama et al. [9]
and Skelton and DeLorenzo [10]. The disturbance inputs and performance outputs are
either ignored or assumed collocated with the sensor and actuator locations, respectively.
Lim [11] first approached this problem of the non-collocated inputs and outputs by
introducing special weights to the actuator/sensor placement index that reflects the
importance of disturbances.

In this paper, we address the two-input two-output actuator and sensor location
problem as applied to flexible structures. We derive the placement rules based on the
properties of the structural Hankel singular values, and illustrate their application with the
truss sensor location.

2. MODAL REPRESENTATION

A flexible structure with nd degrees of freedom is a linear system represented by the
second order matrix differential equations

Mq̈+Dq̇+Kq=Bo u, y=Coq q+Cov q̇. (1)

Figure 1. The structure configuration for testing and control.
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In the equations, q is the nd ×1 displacement vector, u is the s×1 input vector, y is the
output vector, p×1, M is the mass matrix, nd × nd , D is the proportional damping matrix,
nd × nd , (see reference [12] for the definition of the proportional damping), K is the stiffness
matrix, nd × nd , the input matrix B is nd × s, the output displacement matrix Coq is p× nd ,
and the output velocity matrix Cov is p× nd . The number p is the number of outputs, and
s is the number of inputs. The mass matrix is positive definite, and the stiffness and
damping matrices are positive semidefinite.

Let F (nd × n) be the modal matrix consisting of n natural modes, nE nd,
F=[f1 f2 . . . . fn ]. Introduce a new variable qm , such that q=Fqm . Substituting q from
the above equation into equation (1), one obtains the modal mode

q̈m +2ZVq̇m +V2qm =Bm u, y=Cmq qm +Cmv q̇m (2)

where Z=M−1/2
m K−1/2

m Dm , and V=M−1
m Km is a diagonal matrix of natural frequencies

V=diag (v1, v2, . . . , vn ), and Mm =FTMF, Km =FTKF and Dm =FTDF are the
diagonal modal mass, stiffness and damping matrices. The modal input matrix is
Bm =M−1

m FTBo , while Cmq , and Cmv are the modal displacement and rate matrices,
respectively; Cmq =Coq F and Cmv =Cov F.

Introduce a state vector x, which consists of n modal components, xT = {xT
1 xT

2 . . . xT
n }.

The ith state component, xi , is defined as

xi =6vi qmi

q̇mi 7, (3)

where qmi and q̇mi are ith modal displacement and velocity.
The triple (A, B, C) corresponding to the state vector x is the modal state space

representation of a flexible structure. It has block-diagonal matrix A, and the related
blocks of B and C:

B1

B2
A=diag (Ai ), B=G

G

G

K

k

···
G
G

G

L

l

C=[C1 C2 . . . Cn], (4)

Bn

where i=1, 2, . . . , n, and where Ai , Bi and Ci are 2×2, 2× r and s×2 blocks,
respectively:

Ai =$ 0
−vi

vi

−2zi vi%, Bi =$0
bi%, Ci =$cqi

vi
cvi%. (5)

The triple (Ai , Bi, Ci ) is the modal state space representation of the ith component. The
ith modal component equation is

ẋi =Ai xi +Bi u, yi =Ci xi , i=1, . . . , n. (6)

The controllability and observability grammians are positive definite matrices Wc and
Wo , defined as

Wc =g
a

0

exp (At)BBT exp (ATt) dt, Wo =g
a

0

exp (ATt)CTC exp (At) dt. (7)
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The system is balanced if its grammians are equal and diagonal; see reference [13]:

Wc =Wo =G, G=diag (g1, . . . , gN ), gi e 0, i=1, . . . , N, (8)

where the positive variable gi is the ith Hankel singular value of the system, and N=2n
is the number of states.

The controllability and observability grammians of the modal representation are
diagonally dominant, see reference [5]:

Wc 2 diag (wci I2), Wo 3 diag (woi I2), (9)

where wci and woi are given by

wci = >Bi >2
2 /4zivi , woi = >Ci >2

2 /4zivi . (10)

The positive scalars >Bi >2 and >Ci >2 are defined as the input and the output gains of
the ith mode, see reference [14], and >X>2 is the Euclidean norm of X. The ith Hankel
singular value gi is approximately a geometric mean of the ith grammians entries,
gi 3zwci woi , i.e.,

gi 2
>Bi >2 >Ci >2

4zi vi
. (11)

3. ACTUATOR–SENSOR PROPERTIES

Let (A, B, C) be the modal representation of a structure, with s inputs, p outputs, n
components and N=2n states. For simplicity of presentation, the problem of sensor
placement only is considered (actuator placement is similar). Denote by gi (k) the Hankel
singular value for the kth mode at the ith sensor location, and by g(k) the Hankel singular
value for the kth mode at all sensor locations. The following is known from references
[1] and [5].

Property 1:

g2(k)3 s
p

i=1

g2
i (k), k=1, . . . , n. (12)

For the plant as in Figure 1, with inputs w and u, and outputs z and y, let Gwz be the
transfer matrix from w to z, let Gwy be the transfer matrix from w to y, let Guz be the transfer
matrix from u to z, and let Guy the transfer matrix from u to y. Let gwz (k), guy (k), gwy (k)
and guz (k) be the kth Hankel singular values for the transfer functions Gwz , Guy , Gwy and
Guz , respectively. The following multiplicative property holds.

Property 2:

gwz (k)guy (k)2 gwy (k)guz (k), k=1, . . . , n. (13)

Proof. Denote by Bw and Bu the modal input matrices for w and u, respectively, and by
Cz and Cy the modal output matrices for z and y, respectively; the structure is in the modal
representation. The controllability and observability grammians for the kth mode are as
follows, see equation (10):

wcw (k)3 >Bwk >2
2

4zk vk
, wcu (k)3 >Buk >2

2

4zk vk
, woz (k)3 >Czk >2

2

4zk vk
, woy (k)3 >Cyk >2

2

4zk vk
, (14)
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where Bwk and Buk are the kth block-rows of Bw and Bu, respectively, and Czk and Cyk are
the kth block-columns of Cz and Cy, respectively. Note that

g2
wz (k)2wcw (k)woz (k), g2

uy (k)2wcu (k)woy (k), (15a)

g2
wz (k)2wcw (k)woy (k), g2

uz (k)2wcu (k)woz (k), (15b)

and introduce equation (15) to equation (13) to check that Property 2 holds. q
Property 2 shows that for each mode the product of Hankel singular values of the

performance loop (from disturbance to performance) and the control loop (from actuators
to sensors) is approximately equal to the product of the cross-couplings: from disturbances
to sensors, and from actuators to performance output. The meaning of this property lies
in the fact that by increasing the actuator–sensor connection, guy (k), one increases at the
same time the cross-connection: for actuators-to-performance, and for disturbance-to-sen-
sors. It also shows that sensors respond not only to the actuator input, but also to the
disturbances, and actuators impact not only the sensors, but also the performance.

This property is useful in the closed loop design. For the plant as in Figure 1 we have

z=Gwz w+Guz u, y=Gwy w+Guy u. (16)

The closed-loop transfer matrix Gcl from w to z, with the controller K such that u=Ky,
is as follows:

Gcl =Gwz +Guz K(I−Guy )−1Gwy. (17)

From the second part of the right-hand-side of the above equation, it follows that the
controller impacts the closed loop performance not only through the action from u to y,
but also through the cross-actions from u to z, and from w to y. Therefore, if the transfer
matrices Gwy , and Guz , are zero, the controller has no impact whatsoever on the
performance z. Thus the controller design task consists of simultaneous gain improvement
between u and y, w and y, and u and z. However, Property 2 shows that the improvement
in the controllability and observability of Guy automatically leads to the improvement of
the controllability and observability of Gwy , and Guz . Thus, the task of actuator and sensor
location simplifies to the manipulation of Guy alone.

4. IN A SEARCH FOR ACTUATOR AND SENSOR LOCATIONS

The above properties are the basis of the actuator and sensor search procedure. Denote
by g2

uy the vector of squares of Hankel singular values for all available sensors, and by g2
wz

the vector of squares of Hankel singular values for the disturbance input and the
performance output. Then, a non-negative correlation coefficient r, between the g2

uy and
g2

wz Hankel singular values, is defined as

r2 =
g2T

wz g2
uy

>g2
wz >2 >g2

uy >2
. (18)

It will serve as the actuator and sensor location performance index. Indeed, if g2
uy = g2

wz ,
the sensor locations perfectly reproduce the disturbance-performance transfer function,
and the index r achieves its maximal value r=1; in this case the input–output
controllability and observability properties are perfectly aligned (within a constant
multiplier) with the controllability and observability properties of the disturbance-
performance transfer function. Moreover, according to Property 2, the visibility of
disturbances at the output improves, as well as the influence of the input on the
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performance is maximized. Similar to the total performance index, r, define the
performance index ri of the ith sensor:

r2
i =

g2T
wz g2

uyi

>g2
wz >2 >g2

uy >2
, i=1, . . . , p, (19)

where g2
uyi is the vector of squares of Hankel singular values for the ith sensor. Note that

0E ri E rE 1; it is non-negative because both g2
wz and g2

uyi are non-negative; it does not
exceed 1, because g2

uyi is a part of g2
uy. The question arises as to how the individual sensor

coefficients ri participate in the total one, r. The following property explains this question.
Property 3:

r2 3 s
p

i=1

r2
i . (20)

Proof. From Property 1, one obtains that the square of the Hankel singular values of
all sensor location is a sum of the squares of Hankel singular values for each individual
sensor,

g2
uy 3 s

p

i=1

g2
uyi . (21)

Introducing equation (21) to equation (18), and using notation (19) one obtains equation
(20). q

This property shows that the index r for the set of sensors/actuators is an r.m.s. sum
of indexes of each individual sensor or actuator. This decomposition allows for the
evaluation of an individual sensor/actuator and its impact on the whole set performance.

For placement of a large number of sensors the maximization of the above performance
index alone may not be a satisfactory criterion. Suppose that a specific location of a sensor
gives high performance index ri . Inevitably, locations close to it will also have high
performance indices. However they are not necessarily the best choice, since the sensors
at these locations can be replaced by the appropriate adjustment of gain of the original
sensor. In this case one wants to find sensor locations that cannot be compensated by the
original sensor. These locations can be determined using the additional correlation
coefficient rik , defined as

r2
ik =

g2T
uyi g

2
uyk

>g2
uyi >2 >g2

uyk >2
, i=1, . . . , p, k= i+1, . . . , p, (22)

Denote a small positive number by o, and define the membership index I(k) for the kth
sensor as

I(k)=60,
1,

if rik q 1− o and rk E ri , for kq i,
elsewhere.

(23)

The index determines the acceptance of the kth sensor. If I(k)=1, the kth sensor is
accepted as the one that is not correlated with other sensors. If I(k)=0 the kth sensor
is rejected (in this case two locations i and k are either highly correlated, or the ith location
has higher performance ri ). Based on the extensive simulation results it is recommended
to use the values of o from the range o=0.01–0.05.

4.1. 

Based on the derived properties, the following sensor search procedure is adapted.
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Figure 2. The truss.

Figure 3. Hankel singular values of: (a) Gwz (—) and Guy (----); (b) Gwy (—) and Guz (----).

(1) The Hankel singular value vectors are determined for the following transfer
functions: Gwz , the transfer function from the disturbance to the performance, Guyi ,
the transfer functions from all actuators to each individual sensor, i=1, . . . , n; and
Guy , the transfer function from all actuators to all sensors.

(2) The performance index ri of each sensor is determined from Equation (19).
(3) The correlation coefficient rik from Equation (22), and the membership index I(k),

from Equation (23) are determined to check if the current location is highly
correlated with the previously selected locations.

(4) If I(k)=1 the sensor is selected, otherwise it is rejected.

5. EXAMPLE

Consider a steel truss as in Figure 2. For this truss, l1 =10 cm, l2 =8 cm, and the
cross-sectional area is 1 cm2. The disturbance w is applied at node 7 in y direction, the
performance z is measured as rates of all nodes; the input u is applied at node 26 in the z
direction, and the candidate sensor locations are at the nodes 5, 6, 7, 12, 13, 14, 19, 20,
21, 26, 27 and 28 in the x, y and z directions (a total of 36 locations). The task is to select
a minimal number of sensors that would measure as close as possible the
disturbance-to-performance dynamics.
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Figure 4. Overlapped plots of g1 = gwz guy (—) and g2 = gwy guz (----).

Figure 5. The correlation coefficient for each sensor.

First, the Hankel singular values of Gwz , Gwy , Guz , and Guy are determined, and presented
in Figure 3. Next, Property 2 is checked. Equation (13) holds since the curves
g1 (k)= gwz (k)guy (k) and g2 (k)= gwy (k)guz (k) overlap in Figure 4.

In the following, the correlation coefficients ri for each sensor are determined from
Equation (19), and their plot is shown in Figure 5. Note that although there are sensors
with high values of r1, they can be highly correlated. Therefore the membership index I(k)
is determined, assuming that o=0·03. This index is shown in Figure 6. Its only non-zero
values are for k=29 and k=30, corresponding to node 14, and directions y and z. Thus
the rate sensors at node 14 in the y and z directions are chosen for this particular task.

6. CONCLUSIONS

Typically, the actuator and sensor placement problems are formulated such that the
disturbances are collocated with the input, and performance is collocated with the output,

Figure 6. The membership index for each sensor.
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or the actuator and sensor are placed such that the controllability and observability
properties of all, or selected, modes are maximized. In this paper, a placement problem
with non-collocated actuators and disturbances, as well as non-collocated performance and
sensor outputs, is solved. The solution is determined by locating sensors (actuators) such
that the Hankel singular values of the structure from actuator inputs to sensor outputs
are as close as possible to the Hankel singular values of the structure from the disturbance
inputs to performance outputs. It is shown that this approach also improves the
cross-coupling between actuators and performance, and between disturbances and the
sensors, thus improving overall closed loop performance. The search procedure involves
the maximization of the correlation of the Hankel singular values vector of each sensor
(actuator) with the Hankel singular values vector from the disturbance to the performance.
The approach is illustrated with the determination of sensors of a truss structure, where
two selected sensors replaced a set of 36 sensors.
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